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Abstract 

 
There has been significant recent interest, within 

the Aspect-Oriented Software Development (AOSD) 
community, in representing crosscutting concerns at 
various stages of the software lifecycle. However, most 
of these efforts have concentrated on the design and 
implementation phases. We focus in this paper on 
representing aspects during use case modeling. In 
particular, we focus on scenario-based requirements 
and show how to compose aspectual and non-
aspectual scenarios so that they can be simulated as a 
whole. Non-aspectual scenarios are modeled as UML 
sequence diagrams. Aspectual scenarios are modeled 
as Interaction Pattern Specifications (IPSs). In order 
to simulate them, the scenarios are transformed into a 
set of executable state machines using an existing state 
machine synthesis algorithm. Previous work composed 
aspectual and non-aspectual scenarios at the sequence 
diagram level. In this paper, the composition is done at 
the state machine level.  

 
1. Introduction 
 

Requirements that cut across other requirements 
may result in tangled representations. Consequently, 
the reaction to requirements change is more difficult, 
since the impact of the change is more complicated to 
handle. It is therefore important to consider 
crosscutting requirements early in the software 
lifecycle.   

The best way to deal with crosscutting requirements 
is to separate them from other requirements and model 
them independently. This modularization avoids 
tangled representations in the requirements document 
and facilitates requirements evolution. On the other 
hand, if no attention is paid to how the crosscutting 
requirements interact with other requirements, there is 
a danger that the nature of these interactions will only 

become clear during later stages of software 
development when problems are more costly to rectify. 
Hence, it is necessary at the requirements stage to have 
both a means of modeling crosscutting concerns 
independently but also a means of composing 
crosscutting concerns with other requirements in a way 
that will allow the entire set of requirements to be 
validated. 

Aspect-oriented software development (AOSD) [4, 
8] advocates the separation of crosscutting concerns 
(aspects) during development. However, most research 
in this area has focused on the design and 
implementation phases of the software lifecycle. In this 
paper, we consider aspects at the requirements level. In 
particular, we concentrate on scenario-based require-
ments. A simple example of an aspectual requirement 
scenario would be the description of the steps taken in 
response to a communications failure. The 
communications failure scenario is an aspect because it 
applies to all scenarios using the particular 
communication mechanism. Modeling the failure 
scenario without aspects requires that the failure steps 
must be considered in all affected scenarios. Our 
approach will model the failure scenario separately and 
only later will the failure behavior be composed with 
the affected scenarios. 

A scenario is an example trace of desired or existing 
system behavior. Scenarios are commonly used in 
requirements engineering [1] because they are easily 
understood by all stakeholders. A complete and 
consistent set of scenarios can be difficult to specify, 
however, because there are a lot of non-nominal 
scenarios (e.g., exception, failure cases) to consider. 
Many of these are aspectual in the sense that they 
crosscut other scenarios. 

Our process provides a way to describe aspectual 
and non-aspectual scenarios independently and then to 
merge them together for the purpose of validating the 
complete set of scenarios. In particular, we show how 



to separate aspectual scenarios and how to compose the 
behaviors represented by these scenarios so that the 
aspectual behavior can also become part of the 
validation effort.  

Scenarios will be modeled, in this paper, as UML 
interactions (in particular, sequence diagrams) [15]. 
UML interactions, when used to model requirements, 
show the required behavior of several system 
components communicating towards a common goal. 
Interactions are a good way of modeling early 
requirements because they show global exchanges 
between system components and are very natural and 
intuitive to write down. Interactions give a global view 
of the requirements, but to simulate the requirements, a 
local view of each system component is necessary1. 
Finite state machines (FSMs) can be used to model the 
local, internal behavior of system components.  

We will show how to model aspectual scenarios – 
that is, scenarios that crosscut other scenarios. 
Furthermore, we will provide a way of generating finite 
state machines from these scenarios in a manner that 
composes the aspectual and non-aspectual behavior so 
that the set of scenarios can be validated as a whole. As 
previously stated, scenarios will be modeled as UML 
sequence diagrams. Aspectual scenarios will be 
modeled as Interaction Pattern Specifications (IPSs) 
[6]. Finite state machines will be modeled as UML 
state machines and aspectual finite state machines will 
be modeled as State Machine Pattern Specifications 
(SMPSs) [9].  

We present the modeling and composition of 
aspectual scenarios in the context of an iterative 
validation process. An initial set of scenarios is 
translated automatically into a set of UML state 
machines – aspectual scenarios (i.e., Interaction Pattern 
Specifications) become aspectual state machines (i.e., 
SMPSs). The aspectual and non-aspectual state 
machines are then composed by instantiating the 
aspects. The result is a new set of state machines 
representing the complete specification. These state 
machines can be simulated thus providing a convenient 
and easy way for the scenario-based requirements to be 
validated. During simulation, it is likely that new 
scenarios will be discovered or inconsistencies and 
ambiguities will be found in the way that the aspects 
interact with the non-aspects. 

Previous results [17, 18] showed a similar iterative 
validation process in which aspects and non-aspects are 
composed at the scenario level. In this paper, the 
composition is done at the state machine level. More 
precisely, in the former approach, aspects and non-

                                                           
1 at least, using current technology 

aspects are combined before state machines are 
generated from them. The separation of concerns is 
maintained at the state machine level by generating 
separately state machines from the aspects and state 
machines from the non-aspects. There are advantages 
and disadvantages to both approaches.  

With composition at the scenario level, the state 
machines need never be seen by the requirements 
engineer. Composition is specified purely in terms of 
scenario relationships and the executable state 
machines that are generated can be hidden. This has 
advantages for requirements engineers not trained in 
state-based techniques.  

On the other hand, composition at the scenario level 
tends to be rather coarse-grained. The user must 
provide composition operators that describe how to 
interleave messages from different scenarios. By 
composing instead at the state machine level, there is 
additional flexibility in describing the nature of the 
composition because composition can be defined in 
terms of states that are not specified in the scenarios.  

Note that we do not advocate either of these 
solutions, but expect that each one will be appropriate 
in different contexts. 

This paper is organized as follows. Section 2 
presents the overall approach. Section 3 describes 
aspectual scenarios and state machines. Section 4 
presents the process of composition of aspectual and 
non-aspectual state machines. Section 5 shows the 
application of the approach to an example. Section 6 
gives some related work and finally, section 7 presents 
some conclusions and points directions to future work. 
 
2. Overview of the approach 
 

To situate our approach, we define a high-level 
process for developing and composing aspectual and 
non-aspectual behavior – see Figure 1. Use cases (i.e., 
functional requirements) are refined to a set of 
scenarios (also called interactions in this paper). 
Aspectual scenarios, i.e., scenarios that crosscut other 
scenarios, are represented as Interaction Pattern 
Specifications and non-aspectual ones as UML 
sequence diagrams.  

Each aspectual or non-aspectual scenario is 
translated into a set of aspectual or non-aspectual state 
machines (one for each entity involved in the 
interaction). This is done using the Whittle & 
Schumann state machine synthesis algorithm [19].  

The result of the synthesis algorithm is a set of state 
machines – each entity will have an aspectual and a 
non-aspectual state machine. The next stage of the 
process composes the aspectual and non-aspectual state 



machine for each entity. The result is an executable set 
of state machines that completely describe the 
requirements and in which aspectual and non-aspectual 
behavior has been merged. Validation of these state 
machines can now take place using either a simulation 
harness or a code generator and the results can be 
fedback into the overall process. 

 Identify and define   
requirements 

Identify 
scenarios 

Specify 
aspectual and  
non-aspectual 

scenarios 

Identify aspectual 
scenarios 

Compose 
aspectual and  
non-aspectual 
state machines 

Generate  
aspectual and  
non-aspectual  
state machines 

Simulate and 
validate  
system 

requirements  
 

Fig. 1: Process model 
 

Composing (or weaving) aspectual and non-
aspectual state machines helps the requirements 
engineer grasp the full picture. To compose aspectual 
and non-aspectual state machines, we use the notion of 
binding and State Machine Pattern Specification. This 
approach requires that there is a binding statement for 
each application of the aspectual state machine. 
Interaction Pattern Specifications and State Machine 
Pattern Specifications are described in the next section.  

 
3. Background 
 

In this section, we present the required technical 
background for the rest of the paper.  

 
3.1 Pattern Specifications  

 
Pattern Specifications (PSs) [6, 9] are a way of 

formalizing the structural and behavioral features of a 
pattern. The notation for PSs is based on the Unified 
Modeling Language (UML) [15].  

A Pattern Specification describes a pattern of 
structure or behavior and is defined in terms of roles. A 
PS can be instantiated by assigning modeling elements 
to play these roles. The abstract syntax of UML is 
defined by a UML metamodel. A role is a UML 
metaclass specialized by additional properties that any 
element fulfilling the role must possess. Hence, a role 
specifies a subset of the instances of the UML 
metaclass. A PS can be instantiated by assigning UML 

model elements to the roles in the PS. A model 
conforms to a pattern specification if its model 
elements that play the roles of the pattern specification 
satisfy the properties defined by the roles. 

Pattern specifications can be defined to show static 
structure or dynamic behavior. In this paper, we will 
only be concerned with specifications of behavior but it 
should be noted that any class roles participating in 
pattern specifications must be defined in a Static 
Pattern Specification (SPS), which is the PS equivalent 
of a class diagram. 

An Interaction Pattern Specification defines a 
pattern of interactions between its participants. It 
consists of a number of lifeline roles and message roles 
which are specializations of the UML metaclasses 
Lifeline and Message respectively. Each lifeline role is 
associated with a classifier role, a specialization of a 
UML classifier. Figure 2 shows an example of an IPS 
and a conforming sequence diagram (taken from [6]). 
The IPS in Figure 2(a) formalizes the Observer pattern. 
Role names are preceded by a vertical bar to denote 
that they are roles. An IPS can be instantiated by 
assigning concrete modeling elements to the roles. A 
conforming sequence diagram (see Figure 2(b)) must 
instantiate each of the roles with UML model elements 
satisfying the partial ordering on the message roles, 
multiplicity and other constraints (e.g., given in the 
Object Constraint Language [16]). In Figure 2, (b) 
conforms to (a) if we define instantiations as follows:  

1. Bind |NotifyInteraction to KilnInteraction 
2. Bind |s to s 
3. Bind |Subject to Kiln 
4. Bind |o[i] to t[i] 
5. Bind |Observer to TempObs  
6. Bind |Notify to NotifyObs 
7. Bind |Update to UpdateTemp 
8. Bind |GetState to GetKilnTemp 
9. Bind |st to st 
10. Bind |NumOfObservers to NumOfTempObs 

Note that any number of additional model elements 
may be present in a conforming sequence diagram, 
namely, m, Monitor and LogUpdateRecd in Figure 
2(b), as long as the role constraints are maintained. 

A State Machine Pattern Specification (SMPS) 
defines a pattern of state-based behavior between its 
participants. It consists of a number of state roles and 
transition roles, which are specializations of the UML 
metaclasses State and Transition respectively. 

An SMPS can be instantiated by assigning concrete 
modeling elements to the roles. Figure 3 shows an 
example of an SMPS and a conforming state machine 



 

  
   (a)       (b) 

Fig. 2: An IPS (a) and a Conforming Sequence Diagram (b)

where S1, S2, T1 and T2 have been instantiated to A1, 
A2, P1 and P2 respectively.  

Notice again that additional modeling elements are 
allowed in the conforming diagram, Figure 3(b) – 
namely, A3, P3 and P4. A state machine pattern 
specification captures the fact that a state machine 
diagram is an instance of an SMPS if the states and 
relative ordering of the transitions in the SMPS are 
preserved in the conforming state machine diagram. 

 

 
|S1 

 
|S2 

|T1 

 
A3 

 
A2 

 
A1

P1 

P2 

P4 

P3 
|T2 

 
( a )    ( b )  

Fig. 3: An SMPS (a) and a Conforming State 
Machine (b) 

An alternative way of representing patterns in UML 
is to use UML templates [2]. However, PSs are more 
flexible in terms of instantiation.  
 
3.2 State Machine Synthesis 
 

The following is a brief description of the algorithm 
used in this paper to synthesize state machines from a 
collection of scenarios (represented as UML sequence 
diagrams). The algorithm is a variant of the one 
described in [19].  

Any algorithm that translates a set of scenarios into 
state machines must transition from a global scenario-
based view (in which interactions between all system 
components are considered) to local component-based 
views (in which a state machine is given for each 
component). In general, a set of state machines can be 
executed whereas a set of scenarios (e.g., UML 

sequence diagrams) cannot because local models are 
needed for execution. 

There are many algorithms for transforming 
scenarios into executable state machines. The 
interested reader is referred to [20] for examples. We 
merely give the flavor of the technique here. Synthesis 
of state machines is performed in two steps. First, each 
sequence diagram is converted into a set of state 
machines, one for each object 2  involved in the 
interaction. Next, the individual state machines derived 
for each object (from different sequence diagrams) are 
merged into a single state machine for that object.  

In the first step, an individual sequence diagram is 
translated into a collection of finite state machines 
(FSMs). Messages directed towards a particular object 
are considered events in the FSM for that object. 
Messages directed away from an object are considered 
actions. The synthesis algorithm starts by generating an 
initial state for each FSM. It then traverses the 
sequence of messages. Messages have a unique sender 
object and a unique receiver object. For each message, 
a transition is added to the FSM for the receiver of the 
message where the transition is labeled with an event 
having the same name as the message. Similarly, a 
transition is added to the FSM for the sender with an 
action defined, where the action is to send the message. 

We allow state labels in sequence diagrams3 that 
explicitly label a state of an object in the interaction. 
State labels become named states in the generated 
FSM. State labels can lead to loops in the generated 
FSM if a state label occurs in multiple places. 
                                                           
2 When describing the synthesis algorithm, we will refer to objects in 

scenarios. More generally, however, scenarios may represent 
interactions between components or subsystems and hence all 
discussion referring to objects equally applies to components and 
subsystems. 

3  State labels are similar to continuations in Message Sequence 
Charts and UML2.0 sequence diagrams. 

s:Kiln

sd

t[i]:TempObs

NotifyObs

UpdateTemp(s) 

st:=GetKilnTemp() 

KilnInteraction 

m:Monitor 

LogUpdateRecd(s) 

loop <i=1..NumOfTempObs> 

|s:|Subject 

|NotifyInteraction 1..* 

|o[i]:|Observer

loop <i=1…|NumOfObservers> 

|Notify 

|Update(|s) 

|st=|GetState() 



 Figure 4 shows an example of synthesis for a single 
sequence diagram. The state machine on the right is 
generated for B. a/b is the standard event/action 
notation for state machines (i.e., if event a occurs, then 
the transition fires which results in action b being 
taken, where for the purposes of this paper, actions 
always involve sending messages). The black boxes are 
state labels. 

 
Fig. 4: Synthesis for a single sequence diagram. 

Once finite state machines have been created for the 
individual sequence diagrams, the finite state machines 
generated from different sequence diagrams for a 
particular object are merged together. Merging state 
machines derived from different sequence diagrams is 
based upon identifying similar states in the FSMs. Our 
notion of similarity is based on identifying common 
incoming and outgoing transitions to states – see [19] 
for more details. 
 
4. Composition of Aspectual and Non-
Aspectual Finite State Machines 

  
In the same way as [2, 7], we regard aspects as 

patterns. In particular, we represent aspectual scenarios 
as Interaction Pattern Specifications and aspectual state 
machines as State Machine Pattern Specifications. In [6, 
9], an IPS or SMPS consists solely of role elements. 
We extend this definition to allow an IPS or SMPS to 
contain both role elements and non-role (i.e. concrete 
modeling) elements. An example of this in Figure 2(a) 
would be if the |Subject role were replaced with the 
concrete modeling element, Kiln, in the IPS.  

Allowing non-role elements in an IPS and SMPS 
gives much greater flexibility in specifying aspects. For 
example, a security aspect might specify that any new 
user to a system must have their password checked. 
The actions to check the password will be the same for 
any user and hence should be represented directly as 
concrete modeling elements rather than role elements 
that must be instantiated. The inclusion of concrete 
modeling elements in the pattern specifications reduces 
the number of instantiation steps since roles that would 

be instantiated to the same elements in all contexts can 
be directly represented as those elements in the pattern 
specification. 

Figure 5 describes the composition of aspectual and 
non-aspectual finite state machines using the synthesis 
algorithm and instantiation.  

 
 

instantiation 

non-aspects IPSs 

merging 

synthesis 

FSMs  SMPSs 

 
Fig. 5: Compose aspectual and non-aspectual FSM. 
Non-aspectual scenarios are specified as sequence 

diagrams. Aspectual scenarios are specified as IPSs. 
These scenarios are merged together into state 
machines (one aspectual and one non-aspectual for 
each participating object) using the synthesis algorithm. 
The result is two sets of FSMs: one originating from 
non-aspectual scenarios and another obtained from 
aspectual scenarios. For each aspectual FSM, an 
instantiation is given within the context of those FSMs 
that it crosscuts. This yields a new set of FSMs 
(instantiated SMPSs). However, there will now be 
multiple state machines for the same object (i.e., one 
aspectual and one non-aspectual FSM) and so these 
state machines must be merged to yield a single state 
machine for the object that represents the combination 
of the aspectual and non-aspectual behavior.  

As shown in Figure 5, we identify two distinct 
stages in the state machine aspect composition process. 
The first is instantiation in which SMPSs are given a 
binding statement. The second is merging in which the 
bound SMPS is woven with existing non-aspectual 
FSMs. These two stages are described in the following 
sections.  
 
4.1 Instantiation and Merging 

 
In previous work [17, 18], instantiation and merging 

were considered at the scenario level, i.e., the IPSs 
were instantiated and merged with the non-aspect 
scenarios before synthesis took place. In what follows, 
we describe a method for instantiation and merging at 
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the state machine level (i.e., after synthesis takes 
place). 

An important issue surrounding instantiation and 
merging is the level of input required from the user. 
Instantiation is a manual process because the bindings 
have to be provided for each case in which an aspect 
crosscuts a non-aspect. Merging, however, can be 
partially automated. Our approach is to define an 
algorithm for automating the process of merging but to 
allow fine-tuning of this algorithm by user input.  

 
4.2 Codification of Instantiation 
 

Instantiation is the process of binding role elements 
to concrete modeling elements. For state machines, the 
binding consists of mapping state roles and transition 
roles. The transition role mapping is a one-to-one 
mapping of the labels on the transitions. For state roles, 
we allow a many-to-many mapping. In some cases, a 
one-to-one mapping is enough but greater flexibility in 
the way merging is done is achieved via a many-to-
many mapping. In order to support automatic merging 
in the presence of a many-to-many state role mapping, 
additional information will be required from the user, 
as follows: 

1. If the state role mapping is one-to-one, no 
further input is needed from the user. 

2. If the state role mapping is many-to-one, then 
multiple state roles are mapped to the same 
image state. This is interpreted as meaning 
that the image state becomes a composite state 
with the state roles as sub-states. Any 
transitions directed to (or from) the image 
state must be re-directed towards (or away 
from) one of its new substates. The user must 
give the substate that the transitions will be 
directed towards or away from. 

3. If the state role mapping is one-to-many, then 
a single state role maps into multiple image 
states. Because of this, for a transition directed 
towards (or away from) the state role, it is not 
clear which image state the transition should 
be directed towards (or away from). Hence, 
this additional information must be provided 
by the user. 

We will refer to the additional user input required in 
cases (2) and (3) as merging directives. 

The result of instantiation is defined by a mapping 
θ, that binds transition roles to concrete transitions and 
state roles to concrete states, and merging directives if 
θ is many-to-one or one-to-many. For the rest of this 
section, we assume, for simplicity, that the transition 
role mapping is the identity. 

 
4.3 Codification of Merging 
 

We will refer to the example in Figure 6 during the 
description of the merging algorithm.  

|s1

|s2

|s3

|s4

t1

t2

t3

t4

t5

m1

q

m4

m1

m2

m3

m4

 
(a) A                          (b) X 

Fig. 6: SMPS (a) crosscuts FSM (b). 

The left hand side of Figure 6 is an aspect SMPS and 
the right hand side is a non-aspectual FSM. To simplify 
things, we have assumed that the event roles on the 
transitions of the SMPS have already been instantiated 
to m1 and m4. q is a concrete modeling element that 
occurs in the SMPS. Note that not all role elements in 
the SMPS need be given bindings (e.g., |s3 will not be 
instantiated in our first example). The merging 
algorithm proceeds as follows. Denote the SMPS by A 
and the non-aspectual FSM by X. A new state machine, 
Z, is created with states as follows: 

• Each state of X becomes a state of Z. 
• For A, if θ maps multiple state roles of A to a 

single concrete state of X, then X becomes a 
composite state in Z and the state roles of A 
become substates of X in Z.  

• For A, if θ maps a state role of A to a concrete 
state of X such that no other state role of A 
maps to that concrete state, then the state role 
of A is discarded (i.e., it does not become a 
state in Z). 

• In all other cases, state roles of A become 
states of Z, where the name of the state role, 
|a, is mapped in Z to θ(|a). 

The transitions of Z are created as follows: 
• All transitions of X become transitions of Z. 

However, if a transition of X has a target state4 
in X that becomes a composite state in Z, then 
the transition must be redirected such that its 
target state in Z is a substate of the composite 
state. The merging directives tell the algorithm 
which substate the transition should be 
redirected to. Similarly, if the transition of X 
has a source state mapped to a composite state 

                                                           
4 The originating state of a transition will be called its source state. 
Similarly, the destination state of a transition is its target state. 



in Z, then the source is redirected to a substate 
of the composite state. 

• A transition of A whose source state and target 
state roles are each mapped to zero or one 
state under θ, becomes a transition in Z. 

• If a transition of A has a source state role that 
is mapped to multiple states under θ, the 
transition of A becomes a transition of Z, but it 
is redirected so that its source state becomes 
the state specified by the merging directives. 
Similarly for a transition of A that has a target 
state role mapped to multiple states under θ.  

Note how the merging directives required in the 
case of a many-to-many mapping θ are reflected in how 
transitions are created in Z. The many-to-one mapping 
of state roles is taken care of by the first bullet point, 
which ensures that transitions in Z are connected to the 
correct states in the composite states of Z. The one-to-
many mapping of state roles is taken care of by the 
third bullet point – transitions connected in A to a state 
role involved in a one-to-many mapping must be told 
which states they should connect in the final state 
machine Z.  

As written, the rules for constructing Z may result in 
duplicate transitions in Z. We leave it up to the 
algorithm implementer to remove copies of transitions.  

Returning to Figure 6, suppose that the SMPS on the 
left-hand side is bound to the FSM on the right-hand 
side by the mapping θ(|s1)=t1, θ(|s2) = t2, θ(|s4) = t5. 
Following the rules just defined for creating a new state 
machine Z results in Figure 7.  

t1

t2

m1

t3m2

t4
m3

t5

m4|s3

q

m4

 
Fig. 7: Merged FSM and SMPS from Fig. 6. 

The merging algorithm has matched the prefix and 
suffix of the two paths defined in the state machines 
and has created a branch in the centre.  

We provide another example of merging at the state 
machine level that interleaves the events from the 
aspectual and non-aspectual state machine. In this case, 
the mapping θ is defined by θ(|s1)=t1, θ(|s2) = t2, 
θ(|s3) = t2 & t4, θ(|s4) = t5. Note that two state roles 
(|s2 and |s3) in the aspect state machine have been 
mapped onto a single composite state (t2). As 
discussed above, the user must provide merging 
directives that re-route transitions into or out of this 
composite state. In this case, there are two transitions – 

m1 and m2. The target state for m1 is given by a 
merging directive as |s2. The source state for m2 is 
given as |s3. Note also that |s3 maps to multiple states. 
Hence, the user must define, for each incoming (and 
outgoing) transition of |s3 which target (source) state 
the transition should be directed towards. In this 
example, we define that q should go to |s3 in the 
merged state machine, whereas m4 should leave from 
t4. The result of applying the merge algorithm is shown 
in Figure 8. Note that θ gives the user a way to control 
the ordering of q with respect to the other events. A 
way to provide such control is not obvious when 
merging at the interaction level. At the state machine 
level, however, we can redefine θ as follows: θ(|s1)=t1, 
θ(|s2) = t3, θ(|s3) = t3 & t4, θ(|s4) = t5. The result is a 
state machine similar to Figure 8 except that t3 is a 
composite state rather than t2 and the order of the 
events is m1, m2, q, m3, m4. This ordering satisfies the 
constraints of the original SMPS and hence the merged 
state machine continues to conform to the SMPS. 

t1

t2

|s2

|s3 t3

t4

m3

t5
m4

|s2

|s3
q

m2

m1

 
Fig. 8: Event interleaving during composition. 

 
5. Example 
 

We will illustrate our approach using a simple car 
parking example. The top-level requirements for the 
car parking system are as follows: 

 
“To use a car parking system, a client has to get a ticket 

from a machine after pressing a button. Afterwards, the car 
is allowed to enter and park in an available place. The 
system has to control if the car parking is full or if it still has 
places left. When s/he wants to leave the parking place, s/he 
has to pay the ticket obtained (described above) in a paying 
machine. The amount depends on the time spent. After 
paying the client can leave by inserting the ticket in a 
machine which will open the gate for her/him to leave. 
Regular users of the parking system may pre-purchase time 
and enter/exit by inserting a card and PIN number which 
will result in money being deducted automatically from the 
user’s account.” 
 



 
5.1 Identify use cases, aspectual and non-
aspectual scenarios 

 
By analyzing the requirements above, we identify 

the use cases Enter Lot, Exit Lot and Pay. Figure 9 
shows a use case diagram for the example. Interaction 
scenarios can easily be identified based on the Use 
Case diagram.  

Enter Lot
Pay

Driver

Exit Lot  
Fig. 9: Use Case Diagram for the Car Parking System 

We refine each use case into a number of scenarios. 
Among these, some crosscut other ones. For example, 
some error-handling scenarios – i.e., how to react in the 
case of broken machinery, incorrect PIN etc. – can be 
modeled as aspectual scenarios if crosscutting is 
identified. This leads to the scenarios given in Tables 1 
and 2, where I1-I11 are non-aspectual and A1-A3 are 
aspectual. For example, A1 is an aspectual scenario as 
it crosscuts the non-aspectual scenarios I3, I4, and I10. 

Table 1: Non-Aspectual Scenarios 
I1 Enter Lot, parking lot has space 
I2 Enter Lot, parking lot has no space 
I3 Enter Lot, regular user types in PIN and enters 
I4 Exit Lot, driver inserts ticket; ticket paid 
I5 Exit Lot, driver inserts ticket; ticket not paid 
I6 Exit Lot, driver has no ticket 
I7 Exit Lot, grace period from paying ticket exceeded 
I8 Exit Lot, regular user types in PIN and exits 
I9 Exit Lot, driver types in PIN but insufficient funds in account 
I10 Pay, driver inserts ticket and correct money 
I11 Pay, driver adds money to PIN card 
 

Table 2: Aspectual Scenarios 
A1 Machine is broken 
A2 Ticket cannot be read 
A3 PIN incorrect 

5.2 Describe aspectual and non-aspectual 
scenarios 
 

We will give a representative example for modeling 
the aspects using an Interaction Pattern Specification 
(IPS). Figure 10 shows the IPS for interaction aspect 
A1. If the machine cannot respond for any reason the 
supervisor is alerted and the driver receives an error 

message. The IPS contains four role names that must 
be instantiated to compose the aspect with UML 
sequence diagrams. The non-aspectual scenario I4 is 
given by the sequence diagram in Figure 11. 

Driver  |Machine Supervisor

|Action( |a )

|CannotRespond

alertSupervisor( |a )

displayErrorMessage

 
Fig. 10: IPS for the scenario “Machine is broken”. 

Driver Lot Exit 
Machine

Data RecordBarrier

insertTicket( t )

checkTicket(t)

recordTransaction(t)

ejectTicket

open

takeTicket

drive

sensorValidatedExit

close

 
Fig. 11: Sequence diagram for exiting with paid ticket. 

After the driver inserts the ticket, the Lot exit 
Machine checks it and if it is valid the transaction is 
recorded. Then the ticket is ejected and the barrier 
opens. Once the driver collects the ticket and leaves, 
the barrier is closed. 
 
5.3 Generating SMPSs and FSMs  
 

We now apply the synthesis algorithm to the 
scenarios in Figures 10 and 11. The algorithm produces 
an SMPS for |Machine (Figure 12) and a state machine 
for the Lot Exit Machine (Figure 13).  

|s1  

|s2  

|Action( |a ) 

|s3  

|CannotRespond / 
alertSupervisor ( |a ); 
displayErrorMessage  

 
Fig. 12: State machine for |Machine. 



 
t1 

t2 
entry/ checkTicket ( t) 

insertTicket( t ) 

t3 

 / recordTransaction( t ); 
ejectTicket; open 

t4 

takeTicket 

sensorValidatedExit / 
close 

 
Fig. 13: State machine for Lot Exit Machine. 

 

5.4 Instantiating SMPSs  
 

Let us follow the process of instantiation for the 
SMPS for |Machine and state machine for Lot Exit 
Machine. There are five role elements in A1 (see Table 
2) which must be given a binding, as follows: 

1. |s1 binds to t1 
2. |s2 binds to t2 
3. |Action binds to insertTicket 
4. |a binds to t  
5. |CannotRespond binds to timeout 

Note that bindings (1)-(4) bind role elements to 
concrete modeling elements in Lot Exit Machine’s 
FSM. Binding (5), however, binds to a modeling 
element that is not part of the Lot Exit Machine’s FSM. 
Given the bindings, composition is done automatically. 
The instantiated SMPS of |Machine is compared to the 
FSM of Lot Exit Machine and composition produces a 
new FSM that combines the behavior from instantiated 
|Machine and Lot Exit Machine in such a way that the 
new FSM contains all behavior from instantiated 
|Machine and Lot Exit Machine and, in addition, 
conforms to the original SMPS |Machine. The resulting 
new FSM is shown in Figure 14. 

 t1

t2
entry/ checkTicket ( 

insertTicket( t ) 

t3

|s3
timeout / alertSupervisor ( t ); 
displayErrorMessage 

 / recordTransaction( t ); 
ejectTicket; open 

t4

takeTicket 

sensorValidatedExit / 
close 

 
Fig. 14: Composed FSM. 

State machines can also be generated for the other 
objects in the interactions and, after instantiation, the 
whole system can be simulated by injecting events 
using commercially available tools and the 
requirements validated by the users. 

 
6. Related work 
 

Some requirements approaches, such as viewpoints 
[5] and goals [11], address separation of functional and 
non-functional requirements. PREView [14] is a 
viewpoint-oriented requirements engineering method, 
which helps separate functional and non-functional 
properties of a system. Non-functional requirements are 
also separated from functional ones in goal-oriented 
approaches such as KAOS [3]. However, the 
identification of crosscutting requirements and their 
composition are not addressed explicitly.  

Rashid et al. [12, 13] support separation of 
crosscutting properties at the requirements level. 
Composition rules are defined using XML. They use a 
list of constraint actions and operators, which are used 
to specify how an aspectual requirement influences or 
constrains the behavior of a set of non-aspectual 
requirements. Moreover, a conflict resolution scheme is 
presented, which is not addressed in our approach.  

Georg et al. [7] propose an aspect-oriented design 
approach that defines an aspect through role models to 
be woven into UML diagrams. The approach is similar 
to ours in that aspects are treated as patterns. In 
particular, interaction aspects may be modeled as 
interaction role models. However, [7] does not allow 
concrete modeling elements in the role models. The 
addition of concrete modeling elements may be useful 
in practice to reduce the number of instantiations that 
the user must provide. In addition, [7] only considers 
instantiation for interaction role models, not 
composition of role models with non-aspectual 
interactions.  

Clarke and Walker [2] use UML templates to define 
aspects. Interaction pattern specifications provide a 
much more precise way of defining aspects. [2] also is 
concerned more with how to specify the aspects rather 
than weaving aspects into non-aspectual models. 
Clarke and Walker compose static structural properties 
of aspects with non-aspectual class models, but do not 
compose interaction properties of aspects with 
interaction models. 

There is also the work by S. Konrad and B. Cheng 
[10]. They focused on requirements patterns for 
embedded systems. However, pattern composition is 
not addressed in that work. 
 



7. Conclusions 
 

This paper presented an approach to modeling 
scenario-based requirements using aspect-oriented 
principles. Aspectual scenarios were modeled using 
Interaction Pattern Specifications (IPSs). A technique 
was described to compose aspectual and non-aspectual 
scenarios and to transform them into a set of executable 
state machines. In this way, we showed how to separate 
aspects during scenario development but also how to 
generate a composed behavioral description for 
simulating the scenarios. 

The advantages of the approach are common to 
aspect-oriented software development in general: better 
modularization and traceability. This is reflected in the 
flexible and simple way that the merging algorithm is 
defined. Future work will address how to use the result 
of the simulation step to augment or correct the 
scenario models.  

One issue that has not been directly addressed is 
scalability. The developer must provide binding 
statements for each aspect and for each scenario that 
the aspect crosscuts. We expect there to be ways to 
manage this complexity, for example, by providing 
default bindings. The scalability of the synthesis 
algorithm has already been evaluated on real-world 
examples and a Rational Rose add-in has been 
developed for creating and instantiating Pattern 
Specifications. 
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